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Precursory dynamics in threshold systems
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A precursory dynamics, motivated by the analysis of recent experiments on solid-on-solid friction, is intro-
duced in a continuous cellular automaton that mimics the physics of earthquake source processes. The resulting
system of equations for the interevent cycle can be decoupled and yields an analytical solution in the mean-
field limit, exhibiting a smoothing effect of the dynamics on the stress field. Simulation results show the
resulting departure from scaling at the large-event end of the frequency distribution, and support claims that the
field leakage may parametrize the superposition of scaling and characteristic regimes observed in real earth-
quake faults.
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There are many examples in nature of systems whose in- ds(t) o(t)—og
ternal dynamics have as an essential feature the separation of dar ¢ K ) 1)

time scales into a long-term loading process and a short-term

discharge. In the former, some external source slowly drivesvheres(t) and o(t) are the displacement and the stress at
the variables that control the dynamics until these fieldgimet, oy is some residual stress value to which the system
reach some threshold value. When this happens, the fast dgecays afterr(t) reaches a failure threshold:, K is the
namics of the discharge takes over and generates a sequeraastic stiffness, and measures the intensity of this stress
of internal rearrangements, called an avalanche in this corleakage effect. This parameter, with dimensions of inverse
text, which eventually removes the excess through interndime, will in general be dependent on both the stress level
dissipation, or by flow across the system’s borders. Thesand the temperature. An analogous leakage mechanism has
dynamical threshold systems have been the object of muchlSO been suggested in the context of integrate-and-fire neu-
recent interest, due mainly to the fact that they can be recaé®l networkg 1], and it is likely that the results reported here
into a discrete time-evolution form. The resulting discreteWill @lso hold in that context. _ _
dynamics transforms the fast time scale discharge cycle into AS & summary, we will show that the introduction of a

a sequence of well-defined time steps, in each of which thatress leakage process as an interevent dynamics in a SCCA

dynamical fields undergo a stochastic transformation that dem()del for earthquake faults changes in a dramatic way the

pends on their configuration in the previous step as well agpace-tlme patterns it generates. In particularathelue for

. : ' . a,fault may determine its overall behavior as of a scale-
annealed noise. As such, and since the fields are in general

real valued, we will call these representations stochastic co invariant type or a nucleation type, with a mixed composi-
. ' P Yon in between, reproducing features observed in real faults
tinuous cellular automatéBCCA).

Phvsical hat h b deled and i ]. The importance of this new parameter in earthquake
ysical systems that have been modeled and studieg, .o models has in fact been recently evaluated. Its tuning

anng_these Iings are abundant in the literature, ranging frony match the characteristics of each segment in a complex
the firing behavior of neural networks] to the dynamics of - compyter representation of the fault network of southern

domain walls in magnetf2], the motion of vortex lines in  cajifornia allowed the generation of space-time patterns of
type Il Superconductor&], the depll’lnlng transition in the rupture of unprecedented rea“i@il'

growth of interfaces in random medj4], the dynamics of We will consider here the Rundle-Jackson-Broy®iB)
the energy release in solar flarég, and to the source pro- SCCA model for an earthquake fadit0], in its uniform
cesses responsible for earthquakes. long-range interaction, i.e., the mean-field versiah]. Ex-

The existence of an interevent dynamical cycle in the lattensive work has recently focused a near-mean-field version
ter is suggested by recent laboratory experiments addressing this model, where the interaction range has a cutoff and
issues of solid-on-solid friction. A stable slip, with a slow the model can be mapped onto an Ising-like Langevin equa-
velocity that increases with the stress level, is observed priotion [12]. Its dynamical variables are two continuous real-
to failure, leading to a partial release of the accumulated/alued fields, slips;(t) and stressr,(t), defined on the sites

stresg6,7]. This stress leakage mechanism is analogous to gof a lattice. A constitutive equation couples these fields,
temperature-dependent viscosity that has been observed in

laboratory for the creeping of crystalline rocks, and can be

modeled by the equation Ui(t)zzj: Tijsi (DKt 2
whereTj; is the interaction matrix, or stress Green’s func-
*Permanent address: Physics Department and Center for Comption, T;=—K, K=K +K¢, Kc=%,T;;, K_ param-
tational Science, Boston University, Boston, MA 02215. etrizes the loading interaction, andixes a relation between
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the short and long time scales of the physics of the modelhich is an increasingdecreasingfunction of dimension-
Equation (2) specifies the stress at each site as long agss time if;(0)<(>)1/5¢_
max oi(t)]<or, which defines the stress thresheld, taken Equations(4) and(5) above define the generic RJB model
as uniform over the lattice. The interevent, or loading, dy-with stress leakage for interevent dynamics. The current fo-
namics of the standard RJB model is thus very simple; theys of research is on the long-range versions, where the in-
slip field remains static while the stress field undergoes lineaferaction matrixT;; is nonzero for a substantial fraction of all
growth. As soon as the stress at one site reaches the thregiirs (j). Ideal elasticity indicates that this matrix should
old, a fast stochastic relaxation dynamics takes over. The sligwolve a dependence on the distance as,14s expected
at a site that fails is discontinuously reset to a new value thagom the results of simple laboratory experiments. Neverthe-
leads the stress to assume its residual value, usually witfass it has been shown that the upper critical dimension for
some noise, introduced to represent the disorder in the rhenis interaction isd,=2 [13] and we can recover the long
ology. The stress drop is redistributed among the interacting,ave|ength physics of this model by a simpler mean-field
neighbors, with an intrinsic dissipation measured by the facformulation. We will thus focus on the mean-field RJIB
tor 6=K_/K: model, with a uniform interaction matri¥;; =K./(N—1),
whereN=1/A is the number of sites in the lattice. In this

AO’-:E|A(T'| 3) case, the set of equations in E&) can be decoupled and
I K o yield a solution that reads, in dimensionless variables,

wherei is the site that failed. This increase may cause other — 1-6A
sites to fail as well, and the process continues until all sites 7i(7)=[7(0)— n(O)]exW’ 1A ¢T]
have stress below failure. This cascade of failures, or ava-
lanche, is the model's equivalent for an earthquake. — 1 1

The relaxation dynamics of the model can be cast into a +| 7(0)= 5_4,) exp(— d¢7) + 5h 8
single field formulation that is specially convenient for com-
puter simulations. In units of the short time scale, From

oi(t+1)=0o,(t)+ >, T--M@)((r-(t)—a) = 1-oA

i i —~ | iTTK i F 7i(7) = 7(7)=[7(0) = 7;(O) J]exp —| 5 —1~ |7

we can see that this time evolution of the stress field is order
preserving, i.e.,n;(0)> »;(0)= 5;(t)> »;(t), allowing for

the determination of the initiator of the next event by finding
the site with maximum stress at the completion of the previ-
ous event. The important effect of this leakage stress dynam-
‘ics in the pattern of failures of the system comes from the
reduction it causes in the statistical spread of the stress field
with time. A simple measure of this smoothing is obtained
hrough the time evolution of the variance of the stress field

where &;(t) is the noise term. We direct the reader to Ref.
[11] for a complete and pedagogical discussion of this relax
ation dynamics.

We report in this paper results obtained for the introduc
tion of stress leakage, as modeled by Hg, as an interevent
dynamics of our SCCA model. The equations for these inter
event dynamics are obtained by taking the time derivative o
Eq. (2), substitutingds (t)/dt from Eq. (1), and choosing,
with no loss of generalitygr=0, to get,

1-A

varl 7(t)]=var n(O)]eXp{ - ¢T]- €)
doi(t) «
T:RE Tijo;(H) + K, 5
! Because of this exponential smoothing of the stress field, the
. . ) probability of a site to reach failure after receiving a transfer
a set ofN coupled equations for the stress field. Withoutfomy, 5 failing neighbor increases, and is an increasing func-

introducing any particular form for thé;;, these equations yjon of the time to failure. As a consequence, the branching
can be combined to derive the time evolution of the averageatio, defined as the average number of failures caused by

stress for short times(t) = =;0;(t)/N: each failing site, also increases. The system is more likely to
o undergo larger avalanches, which may even be system wide

do(t) Ki— when the time to failure is large enough.
4t 2 oWHK, (6) Because this interevent dynamics preserves order, as al-

ready mentioned, its introduction in a SCCA is rather
straightforward. The site with stress nearest to failyre,,

with the solution, cast in dimensionless form by defining after an event is the initiator of the next, and solving fdn

=oplKw,p=olog,7=t/t, andp=at, Eq. (8) for this site determines the time-to-failure that will
1 1 be used again to update the stress field over the lattice prior
— | T _ = to the event. To avoid the time-consuming solving of tran-
7(7) ( 7(0) o exp(— dpm)+ o¢’ ™ scendental equations at each time step in the simulation, the
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FIG. 1. The frequency distribution is shown for dimensionless
leakage factorgp=1.0 and 2.0; the plot with no leakage is shown
for a comparison. The simulations were performed on ax1233 10° | *% .
lattice, with a dissipation factof=0.01 and a noise amplitude of ry
0.5. Data for this and all subsequent plots were collected from .
3000000 events, after a transient of the same order, and an e ‘ ‘ ‘ ‘
logarithmically binned. 10 0" 0° e s o 10"
. . . . . No. of topplings
time-evolution equations may be linearized, as long as
max 6¢r,[(1—0A)/(1-A)]pr<1, which is true for our pa- FIG. 2. The frequency distribution for the number of topplings
rameters, to read and for the dimensionless event duration are shown for effective
leakage factorp=2.0; the plot with no leakage is shown for a
— — 1-6A comparison.
7i(7)=7(0)+11+ 1A én(0)— 1A én(0) T,

end of Fig. 1 corresponds, in fact, to very different moment
and the solution for the time to failure is releases, as shown in Fig. 2. An intriguing feature of the
latter is the double bump at the large end, located close to
integer multiples of the system size. They suggest that total

Te= 17 Mmax (100 rupture of the system is more likely, in this region, than one
1+ 1-6 ¢—(0)_ 1-6A b would naively expect.
1—A|?7 1—A | ?7max The upper part of this plot shows the distribution of event

durations, defined in the model as the number of updates in

Figure (1) shows a log-log plot of the frequency distribution the fast time scale that are required for relaxation. Again, the
of events as a function of their size. The effect of the stressnodel with leakage reflects an excess of longer events over
leakage dynamics shows up clearly in the excess over scalirgcaling: events with some range of large durations are more
obtained for large events a is increased from 0, together frequent, and the plot shows a local maximum close to its
with a depletion of the distribution in the intermediate sizehigh end.
range. The slope of the scaling part of the plot also gradually The SCCA models with no leakage dynamics show no
increases, starting from the mean-field valte 1.5. The signs of a characteristic-event regime. The power spectrum
smoothing effect of the leakage dynamics, together with thef the distribution of interevent times for large size events is
resulting larger stress average that it causes in the field asvehite. The inclusion of leakage dynamics, however, changes
whole, results in a higher probability for large events tothis aspect radically, as shown in Fig. 3. The distribution of
grow, eventually causing total rupture of the faldb]. interevent times has a pronounced maximum, corresponding

This smoothing effect is reflected also in the distributionto a characteristic period between large rupture events. This
for the number of topplings, shown in the lower plot of Fig. feature is tuned by the leakage parameter, and will be more
2. Here, a counter is updated each time a site fails, even if lominant as it increases.
had failed before in the same avalanche. This number reflects The effects of the leakage dynamics on the statistical
more closely the model’s equivalent for the moment releas@roperties of the model’s stress field are made more explicit
in an event. The fraction of multiple failures vanishes in thein Fig. 4. This plot shows the time evolution, in the slow
exact mean-field limit, and the number of topplings becomeime scale, of its average value and roughness, together with
equivalent to the event area. This is no longer true for thehe configuration entropy. This last quantity is a measure of
model with stress leakage. The single maximum at the uppahe degree of ordering of the stress distributi@d]. Notice
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FIG. 3. The frequency distribution for dimensionless interevent time (loader scale)

times between large events that rupture a fraction of 0.9 of the total . . . .
sites is shown for the dimensionless leakage fagter2.0. The plot FIG. 4. The plot compares the time evolution of the dimension-

shows the establishment of a characteristic event regime, superirH::SS ave.rage stress, roughness, anq configuration entropy for the
posed on a complex background. model with no leakage =0) and with leakage ¢=2.0). The

upper plot shows the area of events in the time window selected, as

that the average stress is an increasing function of the tim@ fraction of the Iattic_e area. The model with Iegkage shows a much
between large events, both for the model without and witHmore regular dyna}mlcs and allows a larger buildup of the average
leakage, but that in the latter the overall average is higher. ASIress: together with smaller roughness and entropy, which leads to
opposed to what was seen in a SCCA model with no leakag® Characteristic event regime.
but with varying dissipation and weakening of failed siteSyj s of the resulting SCCA model, combining the two dy-
[14], we do not recognize a mode switching dynamics as,,mics show a superposition of complex time and space
present in our case. It remains to be seen what features woulthyerng with a more regular occurrence of characteristic
result from a com_b|na.t|on of these dynamics. . .__.events, with rupture of the entire fault.

We presented in this paper a SCCA model with aseismic
creep superimposed on a seismic threshold dynamics, as re- Research by J.S.S.M. was supported by CIRES, Univer-
cent laboratory experiments have shown to exist on solid-onsity of Colorado at Boulder; J.B.R. was supported by DOE
solid friction. In a mean-field approximation, with infinite (Grant No. DE-FG03-95ER14499M.A. by DOE (Grant
range of uniform interactions, the equations for the inter-No. W-7405-ENG-3§ and W.K. by DOE(Grant No. DE-
event stress time evolution can be solved. Computer simuld=G02-95ER14493
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